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Abstract. There has been significant recent interest in using the aggre-
gate information from social media sites to detect and predict real-world
phenomena. Temporal and geographic effects are often considered as two
possible impact factors on detection of rain event from microblog data.
However, the actual contribution of them to rain event detection has yet
to be defined. To investigate this issue, one method considering overall
effects of time and geography is proposed for detecting the rain event.
Our analysis implies that the way people post tweets changes dynami-
cally during a day. The number of tweets grows from the early morning
and peak at midnight. Besides, distribution of the population and user
responses to the rain event are both not the same in different regions.
Our findings therefore suggest that temporal and geographic effects may
play an important role in the detection of rain event. We also apply our
strategy to forecast the rain events. Our results show that our strategy
performs well both in detecting and predicting events of rain. Compara-
tive analysis with existing methods is also presented to demonstrate the
effectiveness of our method. Our proposed scheme is therefore practical
and feasible to be deployed in the real world.

Keywords: Event detection, Event duration, Microblog, Temporal,
Geographical.

1 Introduction

When people plan to travel to somewhere, the first thing comes up to their
mind might be how the weather is there (e.g., Is it raining now? Or will it
rain in the near future?). The weather forecast for a city is summarized from
different regions which belong to this city. It cannot reflect the regional variation
individually. For example, in a city, it might rain in some places while it might not
rain in other places. Or some places may be located at the boundary between two
cities. However, most weather stations only provide weather forecast for cities
or famous scenic spots. There are no weather data for local areas which lie in
the city. It is therefore infeasible for people to obtain exact weather conditions
for local regions.

That is now changing. Data from increasingly popular online social network
sites (e.g., Twitter) allow us to study the detection of rain event duration in real
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time in a way that is both fine-grained and massively global in scale [14]. Twitter,
as a popular microblogging service, has become a new information channel for
users to receive and share information. As of March 2012, there are more than 140
million active users and over 340 million tweets are created and redistributed a
day[10]. Compared to news or blogs articles, Twitter messages(tweets) have 140-
character-message limit in length, resulting in a short and ungrammatical textual
feature. Twitter users tend to use abbreviations and acronyms (e.g., IC refers
to I see, BTW refers to By the way). To detect the rain events by using tweets
collected from Twitter is therefore a real challenge due to the heterogeneous
and noisy nature of the data. On the contrary, such limitation enables users
to update information instantly. With the popularity of mobile device, Twitter
users worldwide act as a group of sensors, forming a social sensor network to
share what is happening around (e.g., tsunami, rain, personal status), making
it possible to real-time report the rain event which happened anywhere at any
time.

However, except the limitations of Twitter in nature mentioned above, the
rain event detection might still be potentially influenced by many external factors
(e.g., geo-location, time, human behavior). By considering the time and location
information, we can detect target events and estimate location of target events.
As a tweet is often associated with a post time and a geo-location, we can detect
when and where a rain event happens. For example, a user might make a tweet
such as “Now it is raining” at 7:13pm on December 24. Consequently, if a rain
event happens in an oceanic area, it is more difficult to locate it precisely from
tweets. It also becomes more difficult to make good estimation in less populated
areas. These two cases imply that practicability of detection of rain events mainly
relies on the number and spatial dispersion of Twitter users. The way people post
tweets changes dynamically during a day. The number of tweets grows from the
early morning and peak at midnight. It should be noted that tweets around the
time and geographically close to such areas would be considered alternatively as
approximate indicators to detect rain events happened in such queried areas at
a given time.

As mentioned above, we conjecture that the spatial and temporal features
may play the important role in rain event detection. However, to the best of our
knowledge, there are no previous research studies targeted to a spatiotemporal
issue in detection of rain events. Thus, it remains unclear to what extent and in
what way the effects of time and geography would be imposed on the detection
of rain event. In this paper, we therefore focus on understanding the influence
of time and geographic on the detection of rain event by aggregating Twitter
messages (tweets). Our study provides clear evidences that the spatiotemporal
feature is an essential factor in detection of rain event duration.

2 Related Work

In the literature, several approaches are proposed to detect events. Allan [1]
studied the topic detection and tracking from documents. Allan et al. [3] and
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Yang et al. [15] also use documents to do the on-line event detection. They
calculate similarity among the existing documents and new coming one by the
incremental clustering to determine a new generated event. Besides, there are
many previous works studied the event detection on web pages. However, their
proposed methods might not be applicable to deal with the detection of the
rain events from microblogs. Microblogs are often shorter and more frequent
updated than documents and blogs. Therefore, conventional statistic-based term
weighting strategies like frequency might not reliable in analyzing microblog
contents.

Some researches studied the event detection problem from the view of signal
by analyzing the frequency of the time series data. Chen et al. [5] and Jianshu
et al. [9] consider words on Twitter and tags of photos on Flickr as the energy,
the events are then detected by analyzing the energy distribution with wavelet
transform. He et al. [7] analyzed words in both time and frequency domain with
Fourier transform. Such methods can detect well while signal alters suddenly.
However, the rain events usually have the duration such that we need not only
detect the beginning but the ending whose variation is not obvious. Cataldi et
al. [4] introduced the aging theory to emerged terms and group them into some
topics. Sakaki et al. [12] studied whether users observe the effect of earthquake
and locate it in a probability-based approach. The same idea can also be applied
to other short length document. Teevan et al. [13] traced the trajectory of storm
by the query logs of a search engine.

Various studies have been made of the analysis of microblogging data (e.g.,
Twitter) from spatial and temporal perspectives. Sakaki et al. [12] introduced a
concept of social sensors to detect earthquake event in real time. They examined
the time-series data to create a temporal model to calculate the probability of an
event occurrence. Spatial models such as Kalman filtering and particle filtering
are then proposed to estimate the locations of events. Java et al. [8] considered
both geographical and topological properties from twitters to analyze the distri-
bution of users and their tweets. MacEachren et al. [11] used the geographical
information of tweets to visualize the location and content of tweets.

Even different from general events, weather events are usually related to re-
gional and local information [13]. Cox and Plale [6] used the Twitter data to
improve the weather observation. Sakaki et al. [12] determined whether a user
observes the earthquake. But the weather events are always with the duration
such that we cannot detect only the happening of an event like first story in
topic detection and tracking problem (TDT problem) [2] but all process of the
event. Unlike the traditional TDT problem, the duration of rain events are usu-
ally shorter. The strength of signal is also weaker than usual events in the later
stage in the duration.

3 Modeling Signals

Our goal is using the twitter data to determine whether it rains or not for
anywhere and anytime. For any locations we are interested in their weather
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conditions, we collect tweets nearby them and use corresponding tweets to create
their own signals so as to detect the rain events. In the rest of this paper, we
use Lj and Ti to represent locations and tweets, respectively.

3.1 Uniform Weighted Signal

As shown in Figure 1, we segment time line into equal size. The value in each
time slot is the summation of score(Ti), where Ti is tweets posted in the period
and score(Ti) is defined as follows:

socre(Ti) = 1 if Ti is related to rain, otherwise 0

The score function preserves all rain related tweets and views them identical. In
the implementation, we construct a classifier trained by support vector machine
(SVM) to filter out the tweets not talking about rain. The signal in Figure 1
now reflects the probability of the whether it rains in Lj in each time slot to a
certain extent. The higher the value in a time slot, the higher the chance that it
rains in Lj at that time.

Fig. 1. Signal example

3.2 Temporal and Geographical Weighted Signal

We furthermore take time and geographic factors into consideration.

Temporal Aspect. For the same location but different time, we observe that
the number of rain-related tweets in a day changes significantly (Figure 2). Many
twitter users like to post tweets in the night and the number of tweets drops
dramatically in the early morning. The phenomenon probably makes detecting
rain event in those “inactive” period hard. Moreover, the durations of rain events
are often less than a day, also highlighting the importance of daily dynamics.
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Fig. 2. Distribution of rain-related tweets in a day

Geographical Aspect. For the same time but different locations, we also find
the similar situation. Figure 3 is the sampling tweets distribution of several
locations. In this example, we find the distributions in these locations are not
uniform. Tweets in some sub-regions are quite dense while some are very sparse.
The serious unbalance may make the outcome be dominated by dense sub-regions
and thus can’t determine the weather condition objectively.

We also observe an interesting phenomenon that the degree of people’s in-
terest in rain(RID(Lj)) varies in different regions. Before further discussing the
relation between them, we need to define how to measure the “degree of interest”
first. For each location Lj, we calculate the number of rain related tweets, divided
by the number of the tweets in each raining time slot, and then set RID(Lj) by
averaging the values over all of the raining time slots. The measurement assumes
users post more rain related tweets if they are more interested in rain events.
Using normalization instead of frequency is more proper to measure RID(Lj)
since the population varies among regions. Figure 4 shows the relation between
RID(Lj) and their corresponding raining frequency. After taking logarithm, we
find they have negative correlation with R2 =0.73. Surprisingly, it quite fits
power law. The finding suggests if it seldom rains in a region, the rain events
tend to catch one’s eye. Thus, more information about weather condition will be
shared on microblogging. The experiment demonstrates how geographical factor
influences the signals in Figure 1 again.

Weighted Score Function. All of above observations suggest temporal and
geographical factors affect signals, we therefore tune the score function score(Ti)
to reflect their influences. The updated score function is named weighted score,
donated as WScore(Ti), and defined as follow:

WScore(Ti) = Tmp(Ti)×Geo(Ti)× score(Ti),

where Tmp(Ti) and Geo(Ti) are the temporal and geographical weights,
respectively.



Analyzing the Spatiotemporal Effects on Detection of Rain Event Duration 511

Fig. 3. The distribution of users for six stations. Each station is located at (0,0)

Fig. 4. The relation between the frequency of rain and the degree of users’ interest in
rain

Tmp(Ti) =
1

the average number of the users who are interested
in rain in the time slot when Ti is posted

Geo(Ti) =
(1 + dist(Ti, Lj))

α

#tweets in the sub-region where tweet is posted
,where α ≤ 0.

In our weighting function Tmp(Ti), “the users” who are interested in rain are
those users posting rain related tweets, which can be learned from training data.
Geo(Ti) contains two parts. In the denominator, we divide location Lj into 4
by 4 sub-regions. Then a tweet Ti is normalized according to the population
of a sub-region where it is posted. The numerator is a function proportional
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to probability density function of a exponential distribution. It considers the
distance between Lj and Ti(i.e., the location where Ti is posted). The farther
the distance between Lj and Ti is , the lower reliability of Ti is to identify the
weather condition of Lj. The parameter α (α ≤ 0) is used to control the weight.
The distance factor will be emphasized if we decrease α.

3.3 Event Detection and Modeling

Now we use the weighted signal to detect rain events and model their life cycles.
Here we borrow the aging theory based method proposed in [14]. The method
uses a wavelet based method to detect the burstiness of signal as the beginning
of rain events. Since users don’t always keep their interest in the rain event, the
signal will decrease as time goes by. In this duration of rain, exponential function
is applied to model the decay of signal. To determine when the rain ends, finally
a threshold based method is proposed. The illustration of the model is shown in
Figure 5.

Fig. 5. Illusion of aging theory based model for rain event

4 Experiments

To evaluate the performance of our system, we gather the weather informa-
tion(rain event) from thirteen weather stations in American and tweets posted
around these stations(20 miles × 20 miles) over a period of three months, from
November 1, 2011 to January 31, 2012. We measure the performance by three-
fold cross validation on four indicators including precision, recall, F1-score and
accuracy. The definitions of four indicators are defined as follows:

Rain(Actually) No Rain(Actually)

Rain(Reported) A B

No Rain(Reported) C D
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precision =
A

A+B

recall =
A

A+ C

F1− score =
2× precision× recall

precision+ recall

accuracy =
A+D

A+B + C +D

We compare our performance with a threshold based method[14]. If the value of
uniform weighted signal in any time slot is larger than the threshold, then the
method judges the time slot as raining. We hope the system alarms everytime
when it rains, but we do not expect many false alarms. Therefore, F1-score is
adopted as the main indicator. Results are shown in Table 1. We can see that
the performance of T-Signal is improved on recall. When we add the time factor
into our model, the more desolate time slot will be more sensitive and more
raining slots can be detected. Inversely, G-Signal improves uniform-Signal on
precision. It is caused by weighting tweets with the geographical factor, and
thus closer users have larger weights. Then the model can detect events more
exactly. Overall, our experiments show that the spatiotemporal factor is helpful
to detect the duration of a rain event.

Table 1. Performance of rain event detection model. G and T donates temporal and
geographical weights respectively

Threshold-Based Uniform-Signal T-Signal G-Signal T+G-Signal

Precision 0.4972 0.5610 0.5528 0.6160 0.6036

Recall 0.6253 0.7102 0.7254 0.6741 0.7059

F1-Score 0.5424 0.6239 0.6255 0.6425 0.6507

Accuracy 0.9299 0.9432 0.9424 0.9501 0.9492

Fig. 6. The performance under various alpha’s
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We also repeat the experiments under various α’s (in Geo(Ti)) to see how
the region size we use to crawl data affects the performance. The tendency in
precision and recall is plotted in Figure 6. Smaller regions lead to lower recall
and higher precision. For location Lj , merely using its nearby tweets is better
in identifying its weather condition. However, not every location Lj always has
sufficient nearby tweets, which will lead to the low recall.

We further categorize rain as heavy, normal and light, and then examine
their properties. In our experiment, recall values for three are 0.9173(heavy),
0.7200(normal) and 0.6633(light) using T+G-Signal. The average number of rain
related tweets normalized by the number of total tweets during heavy rain is
0.0598, which is greater than 0.0404 and 0.0301 for normal rain and light rain
respectively. More tweets are posted during the more serious events, making it
easier to detect in these periods.

As we discussed in Section 3.2 (geographical aspect), the location of users is
an important factor to measure reliabilities of tweets. It also suggests that the
bias of location affects performance a lot. For instance, station 0 and station 2
are near to each other, but their performance is quite different (Table 2). As
shown in Figure 3, the users in station 2 are bias to upper right, namely, the
direction of station 0. In contrast, the users in station 0 are closer to the center.
This example may suggest the performance will be better if the users are closer
to the station. In the case of station 7, it is limited by the topography(Figures 3
and 8) but it also has the good performance. The station 9 is another extreme
instance. The users of station 9 are very close to the center and it results in a
great performance.

Table 2. Performance of each station

station id 0 2 6 7 9 11

F1-score 0.6602 0.2100 0.5062 0.5664 0.7368 0.6399

Fig. 7. The locations of station 0 and station 2. The blue balloon means the center of
station 0; the red thumbtack means station 2’s.
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Fig. 8. The topography around station 7. Balloon A is the center, and other balloons
and black frame are the boundaries for tweets gethering.

5 Rain Prediction

In the previous section, we have showed that our system is practical for detecting
the rain events. Here we further want to understand whether we can predict
weather conditions in the next n time slots. In Figure 9 we plot the signal during
a rain event. From our observation, we believe there are two possible directions
for weather prediction. First, the signal of Lj in this example starts to rise before
it starts raining in Lj . A possible explanation is that before it rains in Lj , it rains
near Lj so the users nearby post rain-related tweets. We therefore can detect
rain events before it occurs. Second, whether it rains or not in consecutive time
slots is not independent, making it possible to use previous data to infer the
weather conditions in the near future.

Fig. 9. A rain event example

We extend the aging based model [14] and construct a simple weather predic-
tion system by modeling the life cycles of rain events. For a location Lj, after
catching the beginning of a rain event, we start to monitor its signal. The signal
generally doesn’t reach maximum at once since users need time to respond the
new event. To predict if it is still raining in the following time slots, we always
assume the signal will decay exponentially(see Figure 5). This is because we have
a few hints about future. What we know is how many tweets in the current time
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Table 3. The performance of rain prediction

Time(Hour) 0.25 0.5 0.75 1 1.25 1.5 1.75 2

Precision 0.5562 0.5548 0.545 0.5401 0.4974 0.5018 0.4926 0.4868

Recall 0.7050 0.7118 0.7117 0.7089 0.7191 0.7233 0.7268 0.7171

F1-Score 0.6218 0.6235 0.6172 0.6130 0.5880 0.5925 0.5872 0.5799

Accuracy 0.9484 0.9498 0.9504 0.9508 0.9508 0.9516 0.952 0.9519

slot. If the current signal is strong enough, the decayed signal we expect in the
next slot will not be lower than a given threshold. Then we predict the rain event
will continue; otherwise, it will stop. Table 3 displays the results.

As we expect, the performance drops when the time we’d like to predict is
farther from now, but it doesn’t drop dramatically. We get 0.579 in F1-score for
predicting if it still rains two hours later. One way to improve the performance
is considering meteorological knowledge simultaneously. For instance, the length
of rain in one location may vary with season and thus we can use an adaptive
threshold instead a static one.

6 Conclusions

In this paper, we discuss the influence of spatiotemporal factor on rain events
detection and prediction. The number of tweets changes in a day, making it
hard to detect events on those “inactive” periods. The different distribution of
population also leads to similar problem. Moreover, the degree of users’ interest
in rain varies with regions. We, therefore, re-weight tweets according to their
spatial and temporal properties. Our experiment show its effectiveness in the
detection of rain event duration. Different settings have been carefully examined.
Finally, a simple prediction model is proposed to forecast weather conditions.
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