Introduction	MARU: Meta-context Aware Random Walks	Experiments	Conclusions

MARU:

Representation Learning for Heterogeneous Networks with Meta-context Aware Random Walks

Jyun-Yu Jiang, Zeyu Li, Chelsea J.-T. Ju and Wei Wang

Scalable Analytics Institute (ScAi) University of California, Los Angeles (UCLA)

CIKM 2020

Introduction ●00000 MARU: Meta-context Aware Random Walks

Experiments

Conclusions 0

Information networks are ubiquitous in our lives.

Low-dimensional feature vectors can be directly applied on applications.

Vector based representation

Adjacency matrix

Many recent researches focus on generating "good" random walks.

Heterogeneous networks are more intuitive and general.

Nodes can belong types with different semantic meanings.

Introduction	MARU: Meta-context Aware Random Walks	Experiments	Conclusions
000000			

Existing methods are limited for heterogeneous networks.

- Nodes can have different frequencies and distributions.
 - Popular nodes can be over-optimized.
- Node types are ignored.
 - Random walks with varied types can have different semantics.
- Relying on prior knowledge and given strategies.
 - Predefined meta-paths, i.e., short type sequences.
 - Ad-hoc random walk strategies.
 - Random walks are manipulated and limited.

A robust method for learning heterogeneous network representations is needed!

The number of feasible meta-contexts are usually limited!

J.-Y. Jiang et al. (UCLA ScAi) MARU: Representation Learning for Heterogeneous Networks

Representation Learning with Meta-context Aware Random Walks (MARU)

Introduction	MARU: Meta-context Aware Random Walks	Experiments	Conclusions
000000	0000	000000	0
Bidirectional	Extended Random Walk		

Classical Random Walks

Bidirectional Extended Random Walks

Tail nodes can also be theoretically better optimized.

Introduction	MARU: Meta-context Aware Random Walks	Experiments	Conclusions
	00000		

Theoretical Proof for Bidirectional Extended Random Walk

Corollary

Assume head nodes are never transitioning to tail nodes in random walks, and the probability of transitioning between tail nodes is p. Given a tail starting node u and the walking length 2n + 1, the expected number of tail nodes in a bidirectional random walk is greater than the expected number in a one-directional random walk.

Proof.

For the one-directional random walk, the expected number of visited tail nodes is $E_o = 1 + \sum_{i=0}^{2n} i \cdot p^i \cdot (1-p)$. For the bidirectional random walk, the expected number of visited tail nodes is $E_b = 1 + 2 \cdot \sum_{i=0}^{n} i \cdot p^i \cdot (1-p)$. Therefore, we have

$$\lim_{n\to\infty} E_b - E_o = \lim_{n\to\infty} (1-p) \cdot \left(\sum_{i=1}^n i \cdot p^i - (i+n) \cdot p^{i+n}\right) > 0$$

Introduction	MARU: Meta-context Aware Random Walks	Experiments	Conclusions
000000		000000	0
Embedding	Inference		

Each node still needs an ultimate representation for applications.

Introduction	MARU: Meta-context Aware Random Walks	Experiments	Conclusions
000000	00000	●00000	O
Experimenta	I Tasks and Datasets		

• Three Evaluation Tasks

- Multi-label Node Classification (Supervised Learning)
- Node Clustering (Unsupervised Learning)
- Link Prediction (Supervised Learning)

Dataset	N	Node Types and Number of Nodes		
DBIS	Author (A)	Paper (P)	Venue (V)	
(264,323 edges)	60,694	72,902	464	
MovieLens	Movie (M)	Actor (A)	Director (D)	User (U)
(1,097,495 edges)	10,197	95,321	4,060	2,113
Yelp	User (U)	Business (B)	Category (C)	Location (L)
(411,263 edges)	16,239	14,284	511	47

Introduction 000000 MARU: Meta-context Aware Random Walks

Experiments Con

Multi-label Node Classification

(a) DBIS (Micro-F1)

(b) MovieLens (Micro-F1)

(c) Yelp (Micro-F1)

(e) MovieLens (Macro-F1)

(f) Yelp (Macro-F1)

J.-Y. Jiang et al. (UCLA ScAi)

MARU: Representation Learning for Heterogeneous Networks

CIKM 2020 14 / 19

Introduction	MARU: Meta-context Aware Random Walks	Experiments	Conclusions
000000		000000	0

Node Clustering

Introduction	MARU: Meta-context Aware Random Walks	Experiments	Conclusions
000000	00000	000●00	O
Link Predicti	on		

AUC with different operators for feature engineering.

				<u> </u>
Method	Operator	DBIS	MOVIE	YELP
DeepWalk	Hadamard	0.6367	0.9110	0.7330
Deepwark	Weighted-L2	0.6094	0.7904	0.6872
nodoluoc	Hadamard	0.6362	0.9060	0.6622
nouezvec	Weighted-L2	0.6292	0.7968	0.6848
LINE	Hadamard	0.5001	0.8631	0.5689
	Weighted-L2	0.5751	0.7611	0.6229
	Hadamard	0.8028	0.9651	0.8117
riiv2vec	Weighted-L2	0.7240	0.7885	0.7137
motopothQuec	Hadamard	0.6778	0.9151	0.7372
metapatrizvec	Weighted-L2	0.7363	0.6996	0.8240
шст	Hadamard	0.6463	0.9119	0.7453
1031	Weighted-L2	0.6260	0.7845	0.6009
	Hadamard	0.9597	0.9207	0.6361
HEGAN	Weighted-L2	0.6714	0.7970	0.7289
MARII	Hadamard	0.9979	0.9963	0.7241
IVIANU	Weighted-L2	0.7468	0.7979	0.8315

Introduction	MARU: Meta-context Aware Random Walks	Experiments	Conclusions
		000000	

Effectiveness of Bidirectional Extended Random Walk

Introduction	MARU: Meta-context Aware Random Walks	Experiments	Conclusions
		00000	

Meta-context Space Size vs. Performance

Introduction	MARU: Meta-context Aware Random Walks	Experiments	Conclusions
000000	00000	000000	•
Conclusions			

- Proposed MARU to learn representations for heterogeneous networks.
- Bidirectional extended random walks improves tail node embeddings.
- Meta-context aware skip-gram model dynamically learns the representations without any prior knowledge or manipulation.
- Extensive experiments demonstrate the significant improvements of MARU against state-of-the-art baselines in three practical evaluation tasks with three real-world datasets.
- Two analyses also show the effectiveness of our proposed techniques.

Thank you!

Ask me questions on QA sessions and jyunyu AT cs.ucla.edu Personal website: https://jyunyu.csie.org/