Introduction	Proposed Approach	Experiments	Conclusions
0000	000000000	00000	O

Learning to Disentangle Interleaved Conversational Threads with a Siamese Hierarchical Network and Similarity Ranking

Jyun-Yu Jiang[†], Francine Chen[‡], Yan-Ying Chen[‡] and Wei Wang[†]

[†]University of California, Los Angeles (UCLA) [‡]FX Palo Alto Laboratory (FXPAL)

June 4, 2018 (NAACL)

Introduction ●000	Proposed Approach 000000000	Experiments 00000	Conclusions O
Conversations ar	e everyday and every	ywhere.	

We humans are inherently social beings.

In the real world...

In the virtual world...

J.-Y. Jiang et al. (UCLA&FXPAL) Learning to Disentangle Interleaved Conversational Threads June 4, 2018 (NAACL) 1 / 19

Introduction •000	Proposed Approach	Experiments 00000	Conclusions 0
Conve	rsations are everyday and	everywhere.	
	We humans are inhere	ntly social beings.	J
	In the real world	In the virtual world	
Q			

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のくぐ

J.-Y. Jiang et al. (UCLA&FXPAL) Learning to Disentangle Interleaved Conversational Threads June 4, 2018 (NAACL) 1 / 19

47 ▶

Introduction	
0000	

Proposed Approach

Experiments 00000 Conclusions 0

Conversations can be simultaneous and interleaved!

Avg. 1.79 conversations at a time Avg. 2.75 conversations at a time Avg. 3⁺ conversations at a time

Web Forum Discussions

Party of 8 Participants

[Aoki et al., 2006]

IRC Channels

[Elsner and Charniak, 2013]

[Aragón et al., 2017]

/□ ▶ 《 ⋽ ▶ 《 ⋽

Proposed Approach

Experiments 00000

Conversations can be simultaneous and interleaved!

Avg. 1.79 conversations at a time Avg. 2.75 conversations at a time Avg. 3⁺ conversations at a time

Party of 8 Participants

[Aoki et al., 2006]

IRC Channels

Elsner and Charniak, 2013]

Web Forum Discussions

[Aragón et al., 2017]

Introduction 0000 Proposed Approach

Experiments 00000

Conversations can be simultaneous and interleaved!

Avg. 1.79 conversations at a time Avg. 2.75 conversations at a time Avg. 3⁺ conversations at a time

Party of 8 Participants

[Aoki et al., 2006]

IRC Channels

[Elsner and Charniak, 2013]

Web Forum Discussions

[Aragón et al., 2017]

- ×

Proposed Approach

Experiments 00000

Conversations can be simultaneous and interleaved!

Avg. 1.79 conversations at a time

Party of 8 Participants

[Aoki et al., 2006]

Avg. 2.75 conversations at a time

IRC Channels

[Elsner and Charniak, 2013]

Avg. 3⁺ conversations at a time

Web Forum Discussions

[Aragón et al., 2017]

-

э

An Example from the Real-World IRC Dataset

Thread	Message
:	:
T31	Malcolm: If running as root, I need to set up a global config rather than \sim /.fetchmailrc?
T38	Elma: i'm sure i missed something but fonts rendering in my gimp works isn't at its best
T39	Sena: is there anyway to see what the CPU temperature is?
T38	Elma: is it because of gimp or i missed some tuning or such?
T31	Rache: Specify a non-default name run control file.
T41	Denny: so how does one enforce a permission set and own- ership set on a folder and all its children?
T31	Malcolm: in the man page it doesn't mention any global fetchmailrc file that is what was confusing me
T42	Shenna: hi, are sata drives accessed as sda or hda?
T41	Elma: -R for recursive
T42	Elma: sda
÷	:

э

An Example from the Real-World IRC Dataset

Thread	Message
:	÷
T31	Malcolm: If running as root, I need to set up a global config rather than ~/.fetchmailrc?
T38	Elma: i'm sure i missed something but fonts rendering in my gimp works isn't at its best
T39	Sena: is there anyway to see what the CPU temperature is?
T38	Elma: is it because of gimp or i missed some tuning or such?
T31	Rache: Specify a non-default name run control file.
T41	Denny: so how does one enforce a permission set and own- ership set on a folder and all its children?
T31	Malcolm: in the man page it doesn't mention any global fetchmailrc file that is what was confusing me
T42	Shenna: hi, are sata drives accessed as sda or hda?
T41	Elma: -R for recursive
T42	Elma: sda
÷	:

An Example from the Real-World IRC Dataset

Thread	Message
÷	:
T31	Malcolm: If running as root, I need to set up a global config rather than ~/.fetchmailrc?
T38	Elma: i'm sure i missed something but fonts rendering in my
	gimp works isn't at its best
T39	Sena: is there anyway to see what the CPU temperature is?
T38	Elma: is it because of gimp or i missed some tuning or such?
T31	Rache: Specify a non-default name run control file.
T41	Denny: so how does one enforce a permission set and own- ership set on a folder and all its children?
T31	Malcolm: in the man page it doesn't mention any global fetchmailrc file that is what was confusing me
T42	Shenna: hi, are sata drives accessed as sda or hda?
T 41	Elma: R for recursive
T42	Elma: sda
÷	

ntrodu	ction	
0000		

Proposed Approach

Experiments 00000

Conversation disentanglement is needed!

- Interleaved conversations are messy.
 - Difficult to follow discussions
 - Hard to find relevant messages to a specific conversation

Conversation Disentanglement

- Given a sequence of messages
- Disentangle messages into a thread for each individual conversation

Goal: to help users easily follow discussions and retrieve relevant messages

Introduction	Proposed Approach	Experiments
0000		

Conclusions 0

Conversation disentanglement is needed!

- Interleaved conversations are messy.
 - Difficult to follow discussions
 - Hard to find relevant messages to a specific conversation

Conversation Disentanglement

- Given a sequence of messages
- Disentangle messages into a thread for each individual conversation

< 🗗 🕨 🔸

- N

Goal: to help users easily follow discussions and retrieve relevant messages

Introduction	Proposed Approach	Experiments	Conc
0000		00000	O

Conversation disentanglement is needed!

- Interleaved conversations are messy.
 - Difficult to follow discussions
 - Hard to find relevant messages to a specific conversation

Conversation Disentanglement

- Given a sequence of messages
- Disentangle messages into a thread for each individual conversation

< 4 → <

E 6 4 E 6

Goal: to help users easily follow discussions and retrieve relevant messages

Eramowork	Quartieur		
	00000000	00000	
Introduction	Proposed Approach	Experiments	Cor

Introduction	

Message Pair Selection for Similarity Estimation

- Previous studies use all pairs.
- $O(n^2)$ message pairs
 - result in an enormous amount of computational time
- Low percentage of message pairs in the same conversation
 - amplifies false alarms
 - harms graph-based methods

Do we need that many pairs?

Introduction	

Message Pair Selection for Similarity Estimation

- Previous studies use all pairs.
- $O(n^2)$ message pairs
 - result in an enormous amount of computational time
- Low percentage of message pairs in the same conversation
 - amplifies false alarms
 - harms graph-based methods

Do we need that many pairs?

Introduction	Proposed Approach	Experiments	Conclusions
0000	○○●○○○○○○	00000	0
Assumption of P	Pairwise Redundancy		

Assumption

The time difference between two consecutive messages in the same conversation is rarely greater than T hours, where T is a small number.

- Only robust message pairs posted within T hours are needed.
- Redundancy of pairwise relationships

J.-Y. Jiang et al. (UCLA&FXPAL) Learning to Disentangle Interleaved Conversational Threads June 4, 2018 (NAACL) 7 / 19

Introd	uction

Experiments 00000 Conclusions 0

Message Representation with CNNs

The effectiveness of convolutional NNs (CNNs) have been demonstrated.

Single-layer CNN

- Low-level context as *n*-gram
- Hard to capture high-level info

- High-level semantics
- Diluted low-level knowledge

▲ 同 ▶ → 三 ▶

- (E

[Kim, 2014]

J.-Y. Jiang et al. (UCLA&FXPAL) Learning to Disentangle Interleaved Conversational Threads June 4, 2018 (NAACL) 8 / 19

Introduction Prop 0000 000

Proposed Approach

Experiments 00000

- ∢ ≣ →

Hierarchical CNN (HCNN) for Message Representation

J.-Y. Jiang et al. (UCLA&FXPAL) Learning to Disentangle Interleaved Conversational Threads June 4, 2018 (NAACL) 9 / 19

Siamese HCNN (SHCNN) for Similarity Estimation

- Absolute difference for representation comparison
 - Fewer parameters
 - Flexibility for each dimension
- Context features are included
 - Additional information
 - e.g., user data and syntactics
 - Interaction with representations

(日本) (日本) (日本)

Introduction	Proposed Approach	Experiments	Conclusions
0000		00000	0
Framework Ove	rview		

J.-Y. Jiang et al. (UCLA&FXPAL) Learning to Disentangle Interleaved Conversational Threads June 4, 2018 (NAACL) 11 / 19

Introduction	Proposed Approach	Experiments	Conclusions
0000	○○○○○○○●○	00000	O
Graph-based	Conversation	Disentanglement	

- Construct a message graph using pairwise relationships
- Each connected component represents a conversation.

• However, false alarms are harmful!

Different conversations can be connected by only one mistake!

Introduction	Proposed Approach	Experiments	Conclusions
0000	○○○○○○●○	00000	0
Graph-based	Conversation I	Disentanglement	

- Construct a message graph using pairwise relationships
- Each connected component represents a conversation.

• However, false alarms are harmful!

Different conversations can be connected by only one mistake!

Introduction	Proposed Approach	Experiments	Conclusions
0000	○○○○○○○●	00000	O
Conversation	Identification I	by SImilarity Ranking	(CISIR)

For each message, only focus on pairs with top-*r* similarity scores.

- Rely on the redundancy of highly confident relations
- Discard edges whose scores are not top-*r* for any message
- Linear computation time with heaps when r is constant

Introduction	Proposed Approach	Experiments	Conclusions
0000	○○○○○○○●	00000	O
Conversation	Identification I	by SImilarity Ranking	(CISIR)

For each message, only focus on pairs with top-*r* similarity scores.

- Rely on the redundancy of highly confident relations
- Discard edges whose scores are not top-*r* for any message
- Linear computation time with heaps when r is constant

Introduction	Proposed Approach	Experiments	Conclusions
0000	○○○○○○○●	00000	O
Conversation	Identification	by SImilarity Ranking	(CISIR)

For each message, only focus on pairs with top-*r* similarity scores.

- Rely on the redundancy of highly confident relations
- Discard edges whose scores are not top-*r* for any message
- Linear computation time with heaps when r is constant

Suppose r = 2

Introduction	Proposed Approach	Experiments	Conclusions
0000	○○○○○○○●	00000	O
Conversation	Identification I	by SImilarity Ranking	(CISIR)

For each message, only focus on pairs with top-*r* similarity scores.

- Rely on the redundancy of highly confident relations
- Discard edges whose scores are not top-*r* for any message
- Linear computation time with heaps when r is constant

Introduction	Proposed Approach	Experiments	Conclusions
0000		00000	0
Conversation	Identification	by SImilarity Ranking	(CISIR)

For each message, only focus on pairs with top-*r* similarity scores.

- Rely on the redundancy of highly confident relations
- Discard edges whose scores are not top-*r* for any message
- Linear computation time with heaps when r is constant

Introduction	Proposed Approach	Experiments	Conclusions
0000		00000	O
Experimental Da	atasets		

- Four publicly available datasets
 - Three synthetic large-scale datasets from Reddit.com
 - One real dataset from IRC channels
- Reddit Datasets
 - All posts and comments posted from June 2016 to May 2017
 - Manually merge comments under posts as interleaved conversations
- IRC Dataset
 - Conversations about Linux for about five hours
 - Ground truths (conversations) are human-annotated

Datacat				
Dataset	gadgets	iPhone	politics	
Messages	8,518	12,433	105,663	497
Conversations	287	617	3,671	39
	5,185	5,231	25,289	71
Train/Valid Pairs	3,445	5,556	244,492	5,995
Test Pairs	27,565	44,450	1,955,943	47,966

Introduction	Proposed Approach	Experiments	Conclusions
0000		●0000	O
Experimental Da	itasets		

- Four publicly available datasets
 - Three synthetic large-scale datasets from Reddit.com
 - One real dataset from IRC channels
- Reddit Datasets
 - All posts and comments posted from June 2016 to May 2017
 - Manually merge comments under posts as interleaved conversations
- IRC Dataset
 - Conversations about Linux for about five hours
 - Ground truths (conversations) are human-annotated

Datacat				
Dataset	gadgets	iPhone	politics	
Messages	8,518	12,433	105,663	497
Conversations	287	617	3,671	39
	5,185	5,231	25,289	71
Train/Valid Pairs	3,445	5,556	244,492	5,995
Test Pairs	27,565	44,450	1,955,943	47,966

Introduction	Proposed Approach	Experiments	Conclusions
0000		●0000	0
Experimental Da	atasets		

- Four publicly available datasets
 - Three synthetic large-scale datasets from Reddit.com
 - One real dataset from IRC channels
- Reddit Datasets
 - All posts and comments posted from June 2016 to May 2017
 - Manually merge comments under posts as interleaved conversations
- IRC Dataset
 - Conversations about Linux for about five hours
 - Ground truths (conversations) are human-annotated

Datacat				
Dataset	gadgets	iPhone	politics	
Messages	8,518	12,433	105,663	497
Conversations	287	617	3,671	39
	5,185	5,231	25,289	71
Train/Valid Pairs	3,445	5,556	244,492	5,995
Test Pairs	27,565	44,450	1,955,943	47,966

Introduction	Proposed Approach	Experiments	Conclusions
0000		●0000	O
Experimental Da	itasets		

- Four publicly available datasets
 - Three synthetic large-scale datasets from Reddit.com
 - One real dataset from IRC channels
- Reddit Datasets
 - All posts and comments posted from June 2016 to May 2017
 - Manually merge comments under posts as interleaved conversations
- IRC Dataset
 - Conversations about Linux for about five hours
 - Ground truths (conversations) are human-annotated

Dataset				
Dataset	gadgets	iPhone	politics	inc
Messages	8,518	12,433	105,663	497
Conversations	287	617	3,671	39
Speakers	5,185	5,231	25,289	71
Train/Valid Pairs	3,445	5,556	244,492	5,995
Test Pairs	27,565	44,450	1,955,943	47,966

Introduction	Proposed Approach	Experiments	Conclusions
0000		0●000	0
Evaluation of Si	milarity Estimation	(Stage 1)	

- Evaluated by ranking metrics
 - P@1, MRR, and MAP
- Comparative Baselines
 - Two naiïve baselines
 - Difference between posted times (TimeDiff)
 - Identicality of speakers (Speaker)
 - Two feature-based baselines
 - Similarity between bag-of-word features (Text-Sim)
 - Logistic regression with various features [Elsner, 2008]
 - Two deep learning baselines
 - Single-layer CNN: DeepQA
 - Multi-layer CNN with attention: ABCNN

Introduction	Proposed Approach	Experiments	Conclusions
0000		00●00	O
Performance of	Similarity Estimati	on (SHCN	N)

Feature-based methods are better than naïve baselines.

Datacat	Reddit Datasets								IRC Dataset			
Dataset		gadgets			iPhone			politics				50
Metric	P@1	MRR	MAP	P@1	MRR	MAP	P@1	MRR	MAP	P@1	MRR	MAP
TimeDiff	0.6916	0.8237	0.8170	0.6085	0.7651	0.7495	0.4412	0.6362	0.5644	0.3262	0.5180	0.4384
Speaker	0.5643	0.7046	0.7425	0.5364	0.6595	0.6590	0.4021	0.4620	0.3914	0.4356	0.6263	0.6891
Text-Sim	0.7913	0.8746	0.8440	0.7347	0.8318	0.7872	0.5245	0.6672	0.5326	0.3712	0.5269	0.3108
Elsner	0.7758	0.8651	0.8321	0.6809	0.7935	0.7471	0.4643	0.6132	0.4884	0.1094	0.1886	0.2063
DeepQA												
SHCNN (L)										0.9807		
SHCNN (H)												

Introduction	Proposed Approach	Experiments	Conclusions
0000		00●00	O
Performance of S	Similarity Estima	tion (SHCNN)	

Deep learning methods perform better than all other baseline methods.

Dataset	Reddit Datasets								IRC Dataset			
Dataset		gadgets			iPhone			politics			NC Datase	
Metric	P@1	MRR	MAP	P@1	MRR	MAP	P@1	MRR	MAP	P@1	MRR	MAP
TimeDiff	0.6916	0.8237	0.8170	0.6085	0.7651	0.7495	0.4412	0.6362	0.5644	0.3262	0.5180	0.4384
Speaker	0.5643	0.7046	0.7425	0.5364	0.6595	0.6590	0.4021	0.4620	0.3914	0.4356	0.6263	0.6891
Text-Sim	0.7913	0.8746	0.8440	0.7347	0.8318	0.7872	0.5245	0.6672	0.5326	0.3712	0.5269	0.3108
Elsner	0.7758	0.8651	0.8321	0.6809	0.7935	0.7471	0.4643	0.6132	0.4884	0.1094	0.1886	0.2063
DeepQA	0.8011	0.8755	0.8511	0.7156	0.8112	0.7766	0.5593	0.6759	0.5685	0.7811	0.8182	0.8050
ABCNN	0.8374	0.8511	0.8502	0.8112	0.8520	0.8118	0.7419	0.6221	0.6644	0.7008	0.4142	0.5858
SHCNN												
SHCNN (L)										0.9807		
SHCNN (H)												

Introduction	Proposed Approach	Experiments	Conclusions
0000	000000000	00●00	O
Performance of S	Similarity Estimatio	n (SHCNN)	

Our proposed SHCNN outperforms all of the baseline methods.

Dataset	Reddit Datasets									IRC Dataset			
Dataset		gadgets			iPhone		politics			ince Dataset			
Metric	P@1	MRR	MAP	P@1	MRR	MAP	P@1	MRR	MAP	P@1	MRR	MAP	
TimeDiff	0.6916	0.8237	0.8170	0.6085	0.7651	0.7495	0.4412	0.6362	0.5644	0.3262	0.5180	0.4384	
Speaker	0.5643	0.7046	0.7425	0.5364	0.6595	0.6590	0.4021	0.4620	0.3914	0.4356	0.6263	0.6891	
Text-Sim	0.7913	0.8746	0.8440	0.7347	0.8318	0.7872	0.5245	0.6672	0.5326	0.3712	0.5269	0.3108	
Elsner	0.7758	0.8651	0.8321	0.6809	0.7935	0.7471	0.4643	0.6132	0.4884	0.1094	0.1886	0.2063	
DeepQA	0.8011	0.8755	0.8511	0.7156	0.8112	0.7766	0.5593	0.6759	0.5685	0.7811	0.8182	0.8050	
ABCNN	0.8374	0.8511	0.8502	0.8112	0.8520	0.8118	0.7419	0.6221	0.6644	0.7008	0.4142	0.5858	
SHCNN	0.8834	0.9281	0.9005	0.8375	0.8944	0.8497	0.7696	0.8392	0.6967	0.9785	0.9838	0.9819	
SHCNN (L)										0.9807			
SHCNN (H)													

Introduction	Proposed Approach	Experiments	Conclusions
0000		00●00	O
Performance of S	Similarity Estima	tion (SHCNN)	

SHCNN still performs well while using only high-/low- level representations.

Dataset	Reddit Datasets									- IRC Dataset			
Dataset		gadgets			iPhone		politics						
Metric	P@1	MRR	MAP	P@1	MRR	MAP	P@1	MRR	MAP	P@1	MRR	MAP	
TimeDiff	0.6916	0.8237	0.8170	0.6085	0.7651	0.7495	0.4412	0.6362	0.5644	0.3262	0.5180	0.4384	
Speaker	0.5643	0.7046	0.7425	0.5364	0.6595	0.6590	0.4021	0.4620	0.3914	0.4356	0.6263	0.6891	
Text-Sim	0.7913	0.8746	0.8440	0.7347	0.8318	0.7872	0.5245	0.6672	0.5326	0.3712	0.5269	0.3108	
Elsner	0.7758	0.8651	0.8321	0.6809	0.7935	0.7471	0.4643	0.6132	0.4884	0.1094	0.1886	0.2063	
DeepQA	0.8011	0.8755	0.8511	0.7156	0.8112	0.7766	0.5593	0.6759	0.5685	0.7811	0.8182	0.8050	
ABCNN	0.8374	0.8511	0.8502	0.8112	0.8520	0.8118	0.7419	0.6221	0.6644	0.7008	0.4142	0.5858	
SHCNN	0.8834	0.9281	0.9005	0.8375	0.8944	0.8497	0.7696	0.8392	0.6967	0.9785	0.9838	0.9819	
SHCNN (L)	0.8470	0.9080	0.8702	0.8066	0.8792	0.8275	0.7225	0.8070	0.6438	0.9807	0.9834	0.9750	
SHCNN (H)	0.8490	0.9105	0.8704	0.8158	0.8851	0.8313	0.7228	0.8110	0.6283	0.9635	0.9728	0.8632	

- Evaluated by clustering metrics
 - NMI, ARI, and F1
- Comparative Baselines
 - Two naiïve baselines
 - Blocks of 10 messages (Block-10)
 - Messages of individual speakers (Speaker)
 - Embedding-based method
 - Doc2Vec with affinity propagation (Doc2Vec)
 - Two methods based on single-pass clustering
 - Context-based message expansion (CBME) [Wang, 2009]
 - Cluster with char- and content-specific features (GTM) [Elsner, 2008]

Distances between Doc2Vec vectors cannot reveal conversations.

Datacat		Reddit Datasets									IRC Dataset		
Dataset		gadgets			iPhone		politics			ince Dataset			
Metric	NMI	ARI	F1	NMI	ARI	F1	NMI	ARI	F1	NMI	ARI	F1	
Doc2Vec	0.1757	0.0008	0.0589	0.2318	0.0002	0.0718	0.2672	0.0001	0.0506	0.2046	0.0048	0.1711	
Block-10													

Naïve baselines have better performance compared to Doc2Vec.

Datacat	Reddit Datasets									IRC Dataset		
Dataset		gadgets			iPhone		politics			ince Dataset		
Metric	NMI	ARI	F1	NMI	ARI	F1	NMI	ARI	F1	NMI	ARI	F1
Doc2Vec	0.1757	0.0008	0.0589	0.2318	0.0002	0.0718	0.2672	0.0001	0.0506	0.2046	0.0048	0.1711
Block-10	0.7745	0.1840	0.3411	0.8203	0.2349	0.4251	0.8338	0.1724	0.3451	0.4821	0.0819	0.2087
Speaker	0.7647	0.0440	0.2094	0.7861	0.1001	0.3339	0.7480	0.0637	0.2207	0.7394	0.4572	0.6310
CBME												

Single-pass clustering methods have the better performance in the Reddit datasets but the worse performance in the IRC dataset.

Datacat		Reddit Datasets										IRC Dataset			
Dataset		gadgets		iPhone politics			Inc Dataset								
Metric	NMI	ARI	F1	NMI	ARI	F1	NMI	ARI	F1	NMI	ARI	F1			
Doc2Vec	0.1757	8000.0	0.0589	0.2318	0.0002	0.0718	0.2672	0.0001	0.0506	0.2046	0.0048	0.1711			
Block-10	0.7745	0.1840	0.3411	0.8203	0.2349	0.4251	0.8338	0.1724	0.3451	0.4821	0.0819	0.2087			
Speaker	0.7647	0.0440	0.2094	0.7861	0.1001	0.3339	0.7480	0.0637	0.2207	0.7394	0.4572	0.6310			
CBME	0.6913	0.0212	0.1465	0.7280	0.0339	0.1966	0.7883	0.0165	0.1382	0.2818	0.0324	0.1970			
GTM	0.7942	0.1787	0.2986	0.8198	0.0536	0.2566	0.8496	0.3076	0.4292	0.0226	0.0001	0.2064			
CISIR	0.8254	0.4287	0.4939	0.8552	0.4236	0.5187	0.8825	0.3561	0.4950	0.9330	0.9543	0.8798			

· · · · · · · · ·

Our proposed CISIR outperforms all of the baseline methods.

Dataset				IRC Dataset								
Dataset		gadgets			iPhone			politics				
Metric	NMI	ARI	F1	NMI	ARI	F1	NMI	ARI	F1	NMI	ARI	F1
Doc2Vec	0.1757	0.0008	0.0589	0.2318	0.0002	0.0718	0.2672	0.0001	0.0506	0.2046	0.0048	0.1711
Block-10	0.7745	0.1840	0.3411	0.8203	0.2349	0.4251	0.8338	0.1724	0.3451	0.4821	0.0819	0.2087
Speaker	0.7647	0.0440	0.2094	0.7861	0.1001	0.3339	0.7480	0.0637	0.2207	0.7394	0.4572	0.6310
CBME	0.6913	0.0212	0.1465	0.7280	0.0339	0.1966	0.7883	0.0165	0.1382	0.2818	0.0324	0.1970
GTM	0.7942	0.1787	0.2986	0.8198	0.0536	0.2566	0.8496	0.3076	0.4292	0.0226	0.0001	0.2064
CISIR	0.8254	0.4287	0.4939	0.8552	0.4236	0.5187	0.8825	0.3561	0.4950	0.9330	0.9543	0.8798

Introduction	Proposed Approach	Experiments	Conclusions
0000		00000	•
Conclusions			

• Focused on the task of conversation disentanglement

- Proposed a two-stage approach
 - (1) Similarity estimation
 - (2) Conversation Disentanglement
- Proposed SHCNN for estimating conversation-level similarity
- Proposed CISIR to disentangle conversations
- Conducted experiments on four datasets
 - including 3 large-scale and 1 real interleaved conversation datasets
- Outperformed several competitive baseline methods

Introduction	Proposed Approach	Experiments	Conclusions
0000	000000000	00000	•
Conclusions			

- Focused on the task of conversation disentanglement
- Proposed a two-stage approach
 - (1) Similarity estimation
 - (2) Conversation Disentanglement
- Proposed SHCNN for estimating conversation-level similarity
- Proposed CISIR to disentangle conversations
- Conducted experiments on four datasets
 - including 3 large-scale and 1 real interleaved conversation datasets
- Outperformed several competitive baseline methods

Introduction	Proposed Approach	Experiments	Conclusions
0000	000000000	00000	•
Conclusions			

- Focused on the task of conversation disentanglement
- Proposed a two-stage approach
 - (1) Similarity estimation
 - (2) Conversation Disentanglement
- Proposed SHCNN for estimating conversation-level similarity
- Proposed CISIR to disentangle conversations
- Conducted experiments on four datasets
 - including 3 large-scale and 1 real interleaved conversation datasets
- Outperformed several competitive baseline methods

Introduction	Proposed Approach	Experiments	Conclusions
0000		00000	•
Conclusions			

- Focused on the task of conversation disentanglement
- Proposed a two-stage approach
 - (1) Similarity estimation
 - (2) Conversation Disentanglement
- Proposed SHCNN for estimating conversation-level similarity
- Proposed CISIR to disentangle conversations
- Conducted experiments on four datasets
 - including 3 large-scale and 1 real interleaved conversation datasets
- Outperformed several competitive baseline methods

Introduction	Proposed Approach	Experiments	Conclusions
0000	000000000	00000	•
Conclusions			

- Focused on the task of conversation disentanglement
- Proposed a two-stage approach
 - (1) Similarity estimation
 - (2) Conversation Disentanglement
- Proposed SHCNN for estimating conversation-level similarity
- Proposed CISIR to disentangle conversations
- Conducted experiments on four datasets
 - including 3 large-scale and 1 real interleaved conversation datasets
- Outperformed several competitive baseline methods

Introduction	Proposed Approach	Experiments	Conclusions
0000	000000000	00000	•
Conclusions			

- Focused on the task of conversation disentanglement
- Proposed a two-stage approach
 - (1) Similarity estimation
 - (2) Conversation Disentanglement
- Proposed SHCNN for estimating conversation-level similarity
- Proposed CISIR to disentangle conversations
- Conducted experiments on four datasets
 - including 3 large-scale and 1 real interleaved conversation datasets
- Outperformed several competitive baseline methods

Introduction	Proposed Approach	Experiments	Conclusions
0000		00000	•
Conclusions			

- Focused on the task of conversation disentanglement
- Proposed a two-stage approach
 - (1) Similarity estimation
 - (2) Conversation Disentanglement
- Proposed SHCNN for estimating conversation-level similarity
- Proposed CISIR to disentangle conversations
- Conducted experiments on four datasets
 - including 3 large-scale and 1 real interleaved conversation datasets
- Outperformed several competitive baseline methods